
My original 1987 “Rodney”

from “How to Build Your Own

Self-Programming Robot”...

note the address and data

toggle switches on top and

relays on bottom in front.

Gladiator Rodney: Yes, that’s an

electric chainsaw on an

autonomous robot (be afraid). Note

the 38KHz Infrared Pringles can

beacon on top (homebrewed) and

1000 Watt inverter on back.

“Springy Thingy” guards camp at Burning

Man 2003 (I think). She survived 5 “burns”

the goal being to leave the event with a

functioning robot.

Rodney Junior: Smarter than the Average Robot
Part 1 of 3

By Camp L. Peavy, Jr.

I graduated from Florida State University in 1982 with a degree in

marketing; I had to sell something what else does one do with a degree in

marketing? At the time Apple was going public and coming out with the Apple

III. I thought to myself, “Oh, this looks interesting I think I’d like to get involved

with this (whatever “this” is)”. Otherwise I would have gone into advertising or

real estate sales… the proverbial “Road Not Taken”. Regardless, I started selling

Trash 80’s (as they were affectionately known) at the local “Radio Shack

Computer Center”. At the time thought to myself… I’d like to take this

(whatever “this” is) to the nth degree… which is what? Mobile robots! Mobile

robots are nothing more than the

microcomputer of the 80’s with eyes, arms,

and legs. Because it was grassy and wanted

wear I picked up a book by “David L.

Heiserman” entitled "How to Build Your Own

Self-Programming Robot" (1979 by TAB

BOOKS). Wherein he describes an 8085

microprocessor controlled device with an 8-bit

data bus, 12-bit address bus… you’d set the

data… set the address and punch the “Load”

button… programming the robot one byte at a time in binary.

Heiserman also had a little theory on “machine intelligence” which

involved learning through experience. The robot’s name was “Rodney”

and that has made all the difference.

After wrestling

with this graduate-level

electronics course for over

five years; building the front-panel, half the mainboard,

auxiliary power and robot body I finally managed to re-

create “Alpha” level machine intelligence as described by

Heiserman with a store-bought 386SX motherboard, relay

I/O card and GWBasic. This was truly one of those “It’s

ALIVE!” moments every robot-builder craves. In fact I used a

variant of this algorithm in my Robot Wars 1996 champion

robot “Gladiator Rodney” (named for Heiserman’s robot)

and my Burning Man Robot (1999-2005) “Springy Thingy”.

Figure 1: The only two patterns with any significant

magnitude or displacement are "forward" and "reverse"

(codes 4 and 8). All other motion patterns rotate around a

point.

This is an article about building a

miniature version of Heiserman’s “Rodney”.

Since he’s a small version of the original let’s call

him “Rodney Jr.” But what does “Junior” do?

Well, he moves… yep, that’s it he moves… the

deal with Rodney and his protégé “Junior” is he

will try different things until he successfully

achieves this goal (that is, moving) and then he

becomes more and more efficient at achieving

this goal (that is, he learns). Primitive, yes, but

like an amoeba bouncing around in a drop of

water from random motions it learns the

responses that moves it the farthest sooner… not

a bad strategy for a little machine exploring its

world. Besides, it’s not what he does but how he

does it that’s important. In other words “Junior”

isn’t programmed just to go to-and-fro but

programmed to monitor the mobility sensor

(more about that later) and try random stuff until

conditions are met that constitute his “goal”

(whatever that might be). Then when he learns a

particular successful response for a particular

situation or condition… when in that situation

again he tries the previously successful response; if the response is again successful “Junior” increments

the confidence level of that response; if not the confidence level is decremented. This robot will think

for itself and learn from its experience… you might say he’s smarter than the average robot!

According to Heiserman Alpha level machine intelligence can be thought of as a basic reflex…

like the aforementioned amoeba bouncing around in a drop of water. In Heiserman’s Rodney the robot's

goal was simply to move. In a differential drive system there are 9 possible motion patterns… including

“stop” however, the only two patterns with any significant magnitude or displacement are "forward"

and "reverse" (codes 4 and 8). All other motion patterns rotate around a point (Figure 1).

This is “Rodney Jr” based on two servos

sandwiched between two acrylic disks,

driven by an Arduino. The key to

Junior’s intelligence is the Roomba

caster wheel in the rear. 1000 times

simpler than the original “Rodney”

which had to be programmed in binary.

This is the underside of the robot. Note

the 9-Volt battery visible through the

clear acrylic disk. Two servos are

sandwiched between two disks and

adhered with foam double-stick tape also

visible though the disk. The Roomba

caster is mounted with Shapelock in the

rear… it only spins when going forward or

reverse.

I quickly realized this when running the store-bought PC

version of Rodney where every pattern or code (with the exception of

“stop”) would detect motion so the robot would go clockwise (code

7) or right wheel forward (code 3) or whatever code was randomly

selected forever because the mobility detector would always detect

motion… not very interesting and not very useful for a fighting robot.

What I did with “Gladiator Rodney” was let the robot run for a limited

period of time and then randomly change patterns regardless of

whether or not the robot had stalled… overridden when the robot

detected the opponent’s

beacon (In the autonomous

division of “Robot Wars”

basically both robots have

modulated 38KHz beacons

which are targeted by the

opponent). This way the

robot would basically “look”

and roam randomly around the arena until it “saw” the

opponent’s beacon. At which point he would target the

opponent with its IR eyes (TV remote control receivers) and

charge towards him (more like a meander but you get the

idea).

Same thing with “Springy Thingy” (the dancing robot)…

I would basically let her go for a limited number of clicks and

then change patterns (code 0-8). For Gladiator Rodney and

Springy Thingy the mobility detector was a spring-loaded gate-

wheel from ACE Hardware with rare earth magnets glued

(E6000) all around the perimeter. I also glued a reed switch to

the caster frame so that when the wheel spun (i.e. the robot

was moving) the reed switch would switch off-and-on. It’s

funny the mind connects the random motion to music and it

appears the robot is reacting to the music (i.e. dancing).

Springy Thingy is alive and well (15 years young) and generally

shows at Maker Faire and HomeBrew Robotics Club Challenge

Meetings.

With “Rodney Jr.” the Alpha level machine

intelligence tries random motion patterns until the robot

discovers either forward or reverse (again the only two

motion patterns with any potential magnitude) like a basic

The heart and mind of the “Rodney Jr” system is the

Roomba mobility sensor… all the robot wants to know is

whether it is moving or not. He eventually learns the

motion patterns which provide the most magnitude or

displacement.

reflex trying random things to see what it can

do to reach its goal or make it “happy”. This

“goal” can be thought of as the robot trying to

move the maximum displacement for a given

area… again, not a bad plan for a little creature

exploring its big world.

 "Beta" class machine intelligence

features memory; that is for a given motion

pattern when the robot discovers either

forward or reverse it remembers that

successful response and uses it the next time

when in that motion pattern or situation it

encounters a stall condition. The program also

increments a confidence level if the response

continues to be successful and decrements it

if it fails. Beta intelligence remembers

successful responses and uses them when in

the same circumstance.

"Gamma" class machine intelligence generalizes this information for heretofore unknown

circumstances. That is when the robot encounters a stall condition in a motion pattern for which it has

no memory (that is no Beta response) it tries a high-confidence Beta level response from other motion

patterns before reverting to Alpha level behavior (random/reflex responses). With each sequential class

of machine intelligence, Alpha, Beta and Gamma, the robot learns the motion patterns which maximize

magnitude sooner and sooner.

To build “Rodney Jr” I’m using an old tabletop robot that was part of a HomeBrew Robotics Club

build known as “The Club Bug”. The basic design is two continuous rotation servos sandwiched between

two 4” plastic disks from TAP Plastics (you know… the fantastic plastic place) controlled by an Arduino

Uno and powered by a 9-Volt battery; pretty common setup as far as tabletop robots go. The wheels are

from a radio-controlled plane (Lite Flite) but could easily be one of those Servo Wheels from Parallax or

Pololu… you could even screw the servo horns onto jar lids with rubber-band treads or any kind of wheel

just make sure it’s not too slippery so you can get traction! The back-half of the robot is made from

Shapelock. If you haven’t used this stuff yet you’re in for a treat. Shapelock (or InstaMorph or Friendly

Plastic or any one of a number of name brands) is Low Temperature Thermoplastic … it comes in little

beads that you put it into water and microwave for a minute or two… it comes out moldable (Hot! but

moldable)… after it cools… it becomes a hard plastic… which can then be reheated and remolded if

necessary… anyway I used this stuff to glom the Roomba stall sensor onto the rear. It’s best to fish the

Shapelock out with chop-sticks… it sticks (bonds) to plastic and you don’t want to use the good

silverware!

Typical IR led phototransistor pair circuit. If the original iRobot

sensor is not available you can homebrew one. Most any

emitter/detector pair will do (Radio Shack 276-142).

The beauty of this project is it can be used with most any tabletop robot… HomeBrew, BoeBot,

LEGO, Arduino, etc… you’re basically just adding the Roomba stall detector (although in this application I

prefer to call it a mobility sensor) and monitoring to see whether the robot is traveling forward or

backwards. The mobility sensor (if you will) in my Rodney Jr is connected to Pin 2. The servo signals lines

are connected to Pins 3 and 4. The robot looks at the status of the mobility sensor (Pin 2) either high or

low (I seed it with a “0” (stop)), determine whether or not the mobility detector is oscillating (did it

change?), if it is oscillating continue the current motion pattern, if not try another random motion code

(0-8), look at the status of the mobility detector (Pin 2) again (either high or low), determine whether or

not the mobility detector is

oscillating (that is going up and

down), if it is oscillating

continue the current motion

pattern, if not try another

pattern (0-8) randomly, over

and over and over. This can be

thought of as the little

creature considering change

over time. Where it looks at its

current state, applies that to

memory, now looks at its

current state again, compares

that to its past “current state”

and does something based on

whether or not these two are

the same. In the Beta and

Gamma stages Junior

remembers his successful

responses and uses them

when appropriate. With Alpha he

continuously uses random

actions. For other ideas on how to

scratch-build tabletop robots there are plenty of pages on the web or take a look at my “ProtoBot” and

“Ameoba” articles from years ago in the “Resources” section. As you can sense this is not a 1,2,3,4…

article on how to build a “machine intelligent” robot… it’s more like guidelines for anyone who would

like to investigate an accessible example of “artificial” intelligence and play around with a genuine

robotic creature.

You’ll want to get the Roomba caster wheel with sensor if only so it comes with the bracket to

mount your own emitter/detector pair. They’re generally available through eBay for about $25. Don’t

worry if you have the caster with no sensor… most any infrared emitter/phototransistor pair will do.

Basically arrange the emitter and detector so they detect the rotation of the caster/encoder wheel as it

changes from black-to-white. You can see this with “serial monitor” in the Arduino IDE. Mine is mounted

I usually place a solderless breadboard

on top of the Arduino so that I can plug

into the sockets. Here the power on the

servos is going to the built-in 5V supply

as are the emitter and detector.

HomeBrew style (that is with gaffer’s tape). R1 (the resistor for the emitter) should be adequate to limit

the current so you don't melt the LED. Generally the formula is subtract your source voltage from the

forward voltage drop in this case 5V-1.5V=3.5V (the amount of voltage the resistor needs to drop) and

divide that by the continuous current (which in this case is 150mA (a lot of current for a little diode;

generally LEDs are ~20mA). If you crunch the numbers the resistor value comes out to 23.33 Ohms… I

tried a 100 Ohm resistor and could see the IR light… also it triggered the detector when I rotated the

wheel so what the heck… save a little energy… 30 instead of

150mA.

R2 (the resistor for the detector) should be the

maximum resistance of the detector (that is when it is in-the-

dark)... usually ~10K Ohms. The one from Radio Shack

measured 13K Ohms… so I tried a 10K and as mentioned above

it worked so good enough is good enough! Also note that the

phototransistor (i.e. the detector) is reverse biased… that is the

cathode is connected to “+” and the anode “-“. Be sure and

check your specifications as your mileage may vary! And of

course you won’t be able to “see” the IR LED (because it’s

below (infra) red on the spectrum). However you view can view

it through a digital camera (i.e. your phone).

As far as the software is concerned the first thing you

do is load the Servo library… then initialize your variables

(standard Arduino stuff). Set the "mobility_sensor" to digital

Pin 2. Initialize the "mobility_read" variable. Initialize

"mobility_read_past". Initialize "stall_ticks. Initialize

"MotionCode". Initialize "PastMotion". Initialize "Confidence"

and finally initialize the "MemArray". If you look at the sample

code and walk through it you can literally see what the robot

thinks and how it learns.

So the first thing your program should do is read the

current state of the mobility sensor… either a “1” or a “0”…

then run the wheels a random pattern or “code”… look at the

mobility sensor again and see if it’s changed… if the sensor did

not change increment “stall_ticks” one unit until it reaches some threshold (mine is set at “100”).

Eventually it will discover forwards or backwards (the only two motion codes with magnitude) and

hopefully have some room to maneuver so the mobility sensor oscillates between “0” and “1” (i.e. it’s

moving). As long as the mobility sensor is spinning the robot’s “happy”. You can test this by picking up

the robot and spinning the caster wheel… whatever motion pattern the wheels are spinning will stay in

that pattern until you stop spinning the wheel. You can also view the status of the mobility sensor’s pin

with “serial monitor” in the Arduino IDE. It should switch between “0” and “1” when you spin the wheel.

The current state of Rodney Jr. is that of Beta intelligence… it has some issues with sometimes

the mobility sensor detecting motion when either left or right wheel goes reverse (codes 2 and 6)… this

is actually very interesting because it still accomplished the goal of maximizing distance around the pen.

He would go forward and turn slightly in reverse which allowed him to extradite himself by then going

forward (code 4) the motion pattern that he remembered as a successful response. You can tweak with

the “stall ticks” to make Rodney Jr more or less sensitive. Also I had to remove the decrement

confidence level component as when Junior learned forward or reverse it got removed once he

eventually ran into a barrier. What needs to happen is travelling beyond a longer distance needs to

define success rather than just a short distance. Finally we need to get to the Gamma level where he will

draw reactions from other successful reactions rather than reverting to Alpha behavior (random). So like

most robot projects this one is still not finished… that’s okay though… because when the robots take our

jobs… our work will be done. In the meantime I’ll produce another article that take Rodney to Gamma

and incorporates the distance level. If you want to play along the code is online and there’s an online

forum from SERVO where we can discuss this article.

Other features I’d like to integrate into Rodney Junior are battery sensing and automatic

charging, light sensor, microphone, speaker (audio output)… maybe make a new goal like follow a ball, a

line or a wall incorporate these things into the learning situation where the robot is keeping track of

more variables than just the mobility detector… and more outputs than just the drive motors… it’s not

so much programing it but interacting with this intelligent little creature on his own terms.

Resources:

 http://tinyurl.com/JuniorPlayPen1

 http://tinyurl.com/JuniorPlayPen2

 http://tinyurl.com/GladiatorRodney

 http://www.camppeavy.com/articles/protobot.pdf

 http://www.camppeavy.com/articles/ultimate.pdf

 http://www.camppeavy.com/articles/amoeba.pdf

Parts List:

Arduino Uno - Digikey #A000066 - $28.28

Tap Plastics 4" diameter Acrylic Circles - $2.05ea x2

Dave Brown Lite Wheels 4-1/2" - (2) $9.95

Shapelock, 250 Grams - $14.95

Roomba 500 700 Series Front Wheel Caster with sensor - ~$25 eBay

http://tinyurl.com/JuniorPlayPen1
http://tinyurl.com/JuniorPlayPen2
http://tinyurl.com/GladiatorRodney
http://www.camppeavy.com/articles/protobot.pdf
http://www.camppeavy.com/articles/ultimate.pdf
http://www.camppeavy.com/articles/amoeba.pdf

